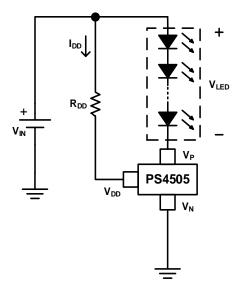
60V/20mA~300mA Single Channel Constant Current LED Driver

Features

- 20mA~300mA constant current LED regulator
- Wide input voltage range
 - Output<80mA: 4.5V to 40V</p>
 - Output>80mA: 7V to 40V
- 60V breakdown voltage
- ±4.5% LED current accuracy
- C Thermal protection: Current ramp down at 125°C
- RoHS Compliant and Halogen Free


General Description

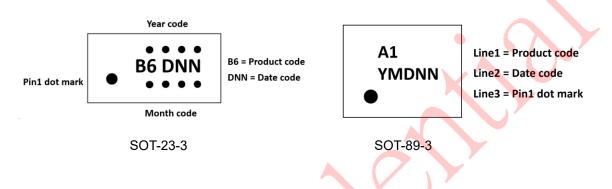
PS4505 is a single channel LED driver with constant current sink function. PS4505 has excellent temperature stability and output current accuracy (±4.5%) over a wide input voltage from 4.5V to 40V. PS4505 implements various fixed output current versions without the need for external current setting resistors, creating a simple solution for driving LEDs. Besides, for the thermal management in LED, PS4505 is featured a current ramp down function from 125°C to 145°C of junction temperature. Moreover, taking reliability into consideration, the maximum voltage rating on VDD, VP and VN is designed as 60V ability to handle high voltage pulse suddenly. PS4505 is available in the cost-effective packages SOT-23-3 or SOT-89-3.

Applications

- General LED lighting
- Constant current COB light engine
- Plant and animal growth lighting

Simplified Application Circuit

Contents

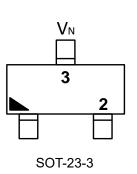

1	Ordering Information	3
2	Marking Information	3
3	Pinout and Functions	3
4	Functional Block Diagram	4
5	Absolute Maximum Ratings (1)	4
6	Thermal Information (2)	4
7	Power Dissipation	4
8	Recommended Operating Conditions (3)	5
9	Electrical Characteristic	5
10	Typical Application Circuit	6
11	Typical Characteristics	7
12	Application Information	8
12.	5 5	
12.	J - J	
12.	3 PWM Dimming	9
12.	4 Thermal Protection: LED Current Ramp Down	10
12.		
13	Package Outline Dimension	
14	Restrictions on product use	13

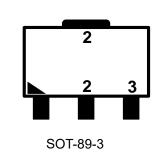
• \

1 Ordering Information

Part Number	Package	Output current	Product Code
PS4505-020S1	SOT-23-3	20mA	A1
PS4505-120S5	SOT-89-3	120mA	A1
PS4505-150S5	SOT-89-3	150mA	B1
PS4505-200S5	SOT-89-3	200mA	B3
PS4505-220S5	SOT-89-3	220mA	B4
PS4505-250S5	SOT-89-3	250mA	B5
PS4505-300S5	SOT-89-3	300mA	B2

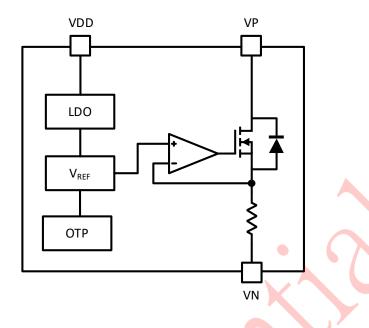
2 Marking Information




Top View

3 Pinout and Functions

	PIN		I/O ⁽¹⁾	Description	
SOT-23-3	SOT-89-3	NAME	10.7	Description	
1	1	VP		Output current regulated pin.	
	-			Output current flows through this pin and regulated.	
2	3	VDD	I	Supply voltage.	
3	2	VN		Chip ground pin.	


(1) I=Input, O=Output, --=Other

4 Functional Block Diagram

5 Absolute Maximum Ratings (1)

Condit	ion	MIN	МАХ	Unit
VDD to VN		-0.3	60	V
VP to VN		-0.3	60	v
Operating Junction Temperature		-40	150	°C
Storage Temperature Range		-65	150	, J

6 Thermal Information (2)

SOT-23-3 Package Thermal Resistance		
Junction to board thermal resistance (θ_{JA})	245	∘C/W
Junction to case thermal resistance (θ_{JC})	33	°C/W

SOT-89-3 Package Thermal Resistance			
Junction to board thermal resistance (θ_{JA}) 168			
Junction to case thermal resistance (θ_{JC})	20	°C/W	

7 Power Dissipation

Item	Value	Unit
P _D @TA=25°C (SOT-23-3)	0.41	W
P _D @TA=25°C (SOT-89-3)	0.60	W

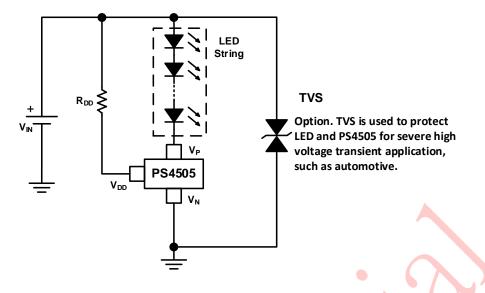
8 Recommended Operating Conditions (3)

Item	Value	Unit
VDD	4.5/7 to 40	V
VP	4.5/7 to 40	V
Operating Junction Temperature	-40 to 125	°C

(1) Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(2) θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}$ C with the component mounted on a high effective-thermal conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.

(3) Device function is not guaranteed if it is operated out of this recommended range.

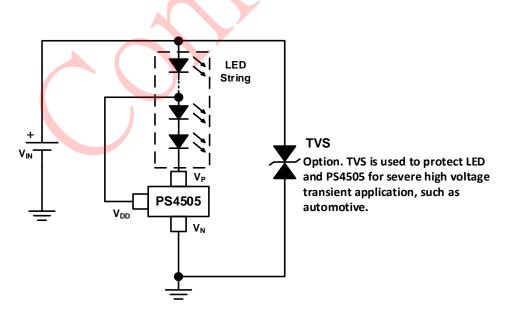
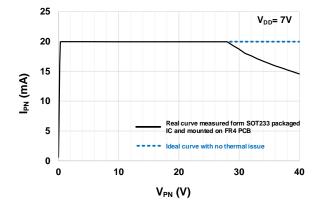

9 Electrical Characteristic

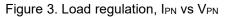
(V_{DD}= 7V, V_N= 0V, T_A= 25°C unless otherwise specified)

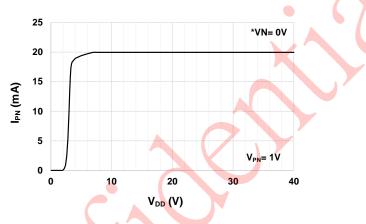
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SUPPLY VOLTAGE & CURREN	Т					
Supply voltage		Ipn < 80mA	4.5		40	V
Supply voltage	V _{DD}	Ipn > 80mA	7		40	V
Supply current	IDD	4.5V≦V _{DD} ≦40V, Is≦250mA	0.06	0.16	0.22	mA
	שטו	7V≦V _{DD} ≦40V, Is>250mA	0.12	0.32	0.44	
OUTPUT VOLTAGE & CURREN	T & ACC	URACY & LEAKAGE				
Output current accuracy	IACY	T _A = 25⁰C, V _{DD} = 7V	-4.5		4.5	%
Output current accuracy vs temperature	Іасу,т	TJ= -40°C~120°C	-3		3	%
Output current accuracy vs VDD	IACY,VDD	V _{DD} = 7V to 40V, V _{PN} = 1V			1.5	%
Output current acc <mark>u</mark> racy vs VPN	IACY,VPN	V _{PN} = 0.3V to 40V, V _{DD} = 7V			1.5	%
Output current	ls	V _{DD} = 7V			300	mA
DROPOUT VOLTAGE			•		•	
N 41	N	V _{DD} > 7V, Is=20mA, I _{PN} = 90%Is		0.25	0.3	N
Minimum dropout voltage	V _{PN_Min}	ⁿ V_{DD} > 7V, I _S ≥80mA, I _{PN} = 90%I _S 0.8		0.8	1	
CURRENT CRAMP DOWN & TH		PROTECT				
Current ramp down temperature	T_{J_down}	$I_{PN} \leq 90\%I_S$		125		°C
Shutdown temperature	T_{J_shtdn}	$I_{PN} \leq 10\% I_S$		145		°C

10 Typical Application Circuit

R _{DD} suggestion table							
LEDs (EA)	R _{DD} (I _{PN} < 300mA)	R _{DD} (I _{PN} ≧300mA)					
3	24kΩ	12kΩ					
7	100kΩ	47kΩ					
11	180kΩ	91kΩ					
15	270kΩ	130kΩ					
	3 7 11	LEDs (EA) R _{DD} (I _{PN} < 300mA) 3 24kΩ 7 100kΩ 11 180kΩ					


Figure 2. General DC power LED drive (Option 2).



11 Typical Characteristics

SOMESX

12 Application Information

The PS4505 is a Constant Current Regulator (CCR) for LED driver. It is achieved by adjusting the internal selfbiased transistor to regulate the current through PS4505 or any devices in series with it. Besides, as operating temperature rising, PS4505 features a thermal protection function to protect LEDs through reducing operating current if junction temperature of PS4505 is above 125°C.

12.1 Single LED String

PS4505 can be placed in a series of LEDs string, as shown in figure 5. The number of the LEDs is limited by the V_{IN} supply voltage and V_{PN} voltage across the PS4505. Hence, the design must estimate the voltage across the LEDs and PS4505 by taking the minimum input voltage greater than the sum of maximum voltage across the LED string and minimum V_{PN} drop out.

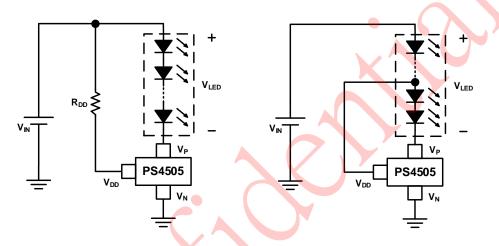


Figure 5. General LED driving application

Figure 6. Self-bias LED driving application

Figure 5 is a general LED driving method, the minimum input voltage $V_{IN(min)}$ has to be higher than $V_{LED}+V_{PN}$ or $I_{DD} \cdot R_{DD}+7V$. Resistor R_{DD} is used to protect the V_{DD} pin from damage due to fast V_{IN} transitions, such as hot plug of V_{IN} power or unexpected high spikes from power line. The equation is as follows:

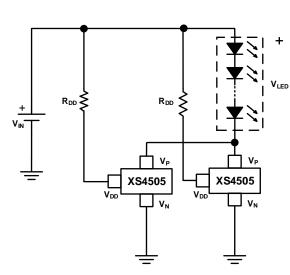

$$V_{IN(min)} = V_{LED(max)} + V_{PN(min)}$$
(1)
$$R_{DD} \le \frac{V_{IN} - 7V}{I_{DD(max)}}$$
(2)

Figure 6 shows another way to driving LEDs. In this way, the self-bias V_{DD} voltage of PS4505 is equal to the total V_F voltage of LEDs between V_{DD} and V_P pin plus $V_{PN(min)}$ voltage. This V_{DD} voltage should be approximately above 7V. Generally, 2 white LEDs or 3 red LEDs between V_{DD} and V_P pin are sufficient for this application.

Note: If output current I_S is lower than 80mA, the V_{DD_Min} is 4.5V. If output current I_S is greater than 80mA, V_{DD_Min} is 7V.

12.2 Higher Current LED Strings

For higher LED current demand, two or more PS4505 can be connected in parallel to increase the LED current as shown in figure 7.

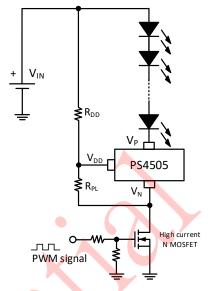


Figure 8.PWM dimming by external MOSFET

12.3 PWM Dimming

Figure 8 is the best PWM dimming application circuit. To achieve LED dimming in an LED driving circuit with the PS4505, you can use a MOSFET to switch the power supply. The brightness is controlled by the duty cycle of a PWM (Pulse Width Modulation) signal. Resistor R_{DD} and R_{PL} act as a voltage divider to generate the proper V_{DD} voltage for PS4505 and discharge the residual charge on power line while the switch MOSFET is off. To discharge the residual charge is important because it will cause instability in dimming control, resulting in flickering or inconsistent brightness. The duty cycle of the PWM signal is defined as the ratio of the LED on time (T_{ON}) to the entire cycle time (T). The duty cycle of the PWM signal is shown in figure 9. Figure 10 shows the current accuracy with different duty cycle.

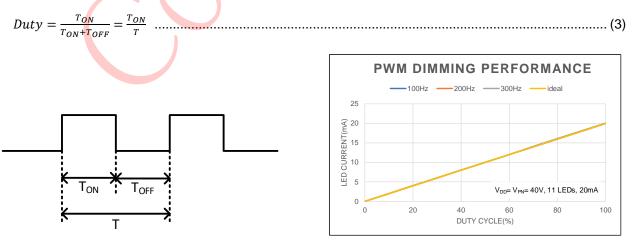
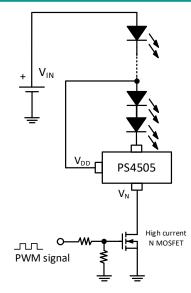



Figure 9. PWM dimming signal

Figure 10. Current accuracy vs PWM dimming

PS4505

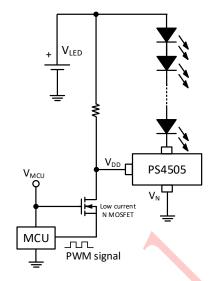


Figure 11. High current application.

Figure 12.PWM dimming by external MOSFET

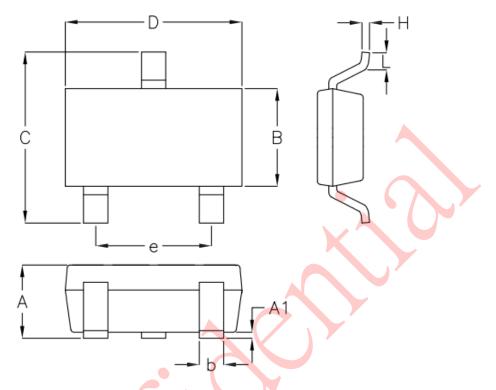
Figure 11 shows the self-bias dimming circuit. The advantage is no need of resister for PS4505 biasing. In many compact LED applications this will mostly reduce the procedure of production. The disadvantage is the PWM dimming frequency should be lower. It is suggested the frequency should be lower than 1KHz to get better dimming control. Both switch N MOSFETs in figure 8 and figure 11 are to switch the total power of LED loads, so it should have lower R_{DS} resistance and lager power dissipation capability to minimize the power lost and heat generation. In contrast to those two circuits, figure 12 provides alternative way to control the V_{DD} of PS4505 by using a small, low power N MOSFET. This MOS can resist the higher PS4505 V_{DD} voltage from V_{LED} or cut off this voltage while MCU outputs a low voltage.

12.4 Thermal Protection: LED Current Ramp Down

For protecting LED under high temperature application, LED current is decreased automatically while PS4505's junction temperature is over 125°C. If PS4505's junction temperature approaches 145°C, LED current remains below 10%. As the temperature decreases, the LED current will recover when the junction temperature is below 125°C.

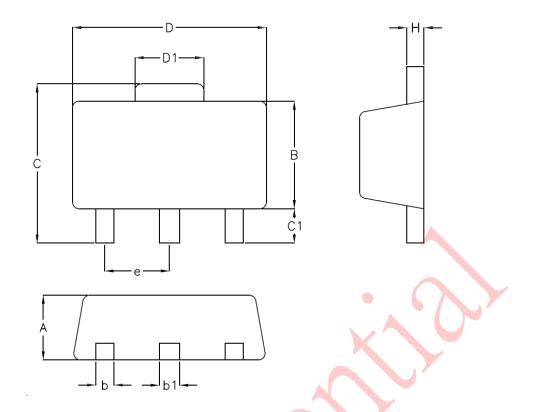
12.5 Power Dissipation Considerations

PS4505 is indeed a linear constant current driver, and managing the heat it generates is important for ensuring its reliability and performance. The power consumption of PS4505 can be calculated using the formula:


$V_{PN} = V_{IN} - V_{LED} \tag{3}$	3)
$P_D = I_{PN} \times V_{PN} \tag{4}$	4)

Where I_{PN} is the regulated current, V_{PN} is the voltage across the device. From circuit design perspective, first, optimizing the voltage across the device is crucial for improving system efficiency and reducing heat generation. Such as selecting LEDs with a forward voltage that best matches supply voltage, or carefully selecting or designing the power supply to provide a voltage that matches the LED string's needs without excessive headroom. Secondly, for higher current applications, using multiple low current drivers in parallel

can spread the heat generation and avoid OTP protection. Third, implement proper thermal management, such as heat sinks or improved airflow.


13 Package Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
А	0.889	1.295	0.035	0.051
A1	0.000	0.152	0.000	0.006
В	1.397	1.803	0.055	0.071
b	0.356	0.508	0.014	0.020
С	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
е	1.803	2.007	0.071	0.079
Н	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

SOT-23-3 Surface Mount Package

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
А	1.397	1.600	0.055	0.063
b	0.356	0.483	0.014	0.019
В	2.388	2.591	0.094	0.102
b1	0.406	0.533	0.016	0.021
С	3.937	4.242	0.155	0.167
C1	0.787	1.194	0.031	0.047
D	4.394	4.597	0.173	0.181
D1	1.397	1.753	0.055	0.069
е	1.448	1.549	0.057	0.061
Н	0.356	0.432	0.014	0.017

SOT-89-3 Surface Mount Package

POWERX

14 Restrictions on product use

- PowerX Semiconductor reserves the right to update these specifications in the future.
- The information contained herein is subject to change without notice.
- PowerX Semiconductor will continually be working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress.

It is the responsibility of the buyer, when utilizing PowerX Semiconductor products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such PowerX Semiconductor products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that PowerX Semiconductor products are used within specified operating ranges as set forth in the most recent PowerX Semiconductor products specifications.

• The PowerX Semiconductor products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).

These PowerX Semiconductor products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage").

Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc..

Unintended Usage of PowerX Semiconductor products listed in this document shall be made at the customer's own risk.